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ABSTRACT
Internet-scale Distributed Networks (IDNs) are large distributed
systems that comprise hundreds of thousands of servers located in
hundreds of data centers around the world. A canonical example
of an IDN is a content delivery network (CDN) that delivers con-
tent to users from a large global deployment of servers around the
world. IDNs consume significant amounts of energy to power their
deployed server infrastructure, and nearly as much energy to cool
that infrastructure. We study the potential benefits of using two
new cooling technologies—open air cooling (OAC) and thermal
energy storage (TES)—to reduce the energy usage as well as the
operational and capital costs incurred by an IDN for cooling. We
develop novel algorithms to incorporate both technologies into the
IDN architecture and empirically evaluate their efficacy using ex-
tensive work load traces from Akamai’s global CDN and global
weather data from NOAA. Our results show that both technologies
hold great promise for the future sustainability of Internet-scale dis-
tributed networks. Our algorithm for power management of TES is
provably near-optimal, is the first to incorporate storage efficiency,
and is broadly applicable to other storage devices such as batteries.
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1. INTRODUCTION
Modern Internet services are delivered by Internet-scale distributed

networks (IDNs) that consists of hundreds of thousands of servers
deployed in a large number of data centers around the world. IDNs
include cloud and Internet services such as content delivery net-
works (CDNs) that deliver web content, applications, and stream-
ing media to clients on the web via hundreds of thousands of servers
located in thousands of data center locations throughout the world
[23]. An IDN consumes a significant amount of energy to power
its servers and to cool them. It is not uncommon for a large IDN
⇤This work was performed when Rahul Urgaonkar was at IBM Re-
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to incur energy bills that run into millions of dollars per month.
The environmental impact of Internet-scale networks, and data cen-
ters generally, is also considerable with carbon emissions from data
centers growing by 15% each year [14]. Thus, it is imperative to
re-design IDNs with energy as a key design consideration to ensure
the sustainable growth of these networks.

Recently there has been considerable work in reducing the power
consumption of servers in a data center and IDNs by using ad-
vanced cluster-wide power management techniques [3] or by sim-
ply shutting down servers or clusters during off-peak periods [16,
21]. While such techniques yield significant cost benefits, they only
address the energy costs of powering the servers and do not directly
address the energy cost of cooling them. Many data centers and
IDNs still consume around 0.8 Watts of power to cool a server for
every 1 Watt used to power that server—hence the energy bill spent
in cooling an IDN is nearly as large as the energy used to power
its servers. Rather than focus on server energy reduction, we focus
explicitly on the complementary problem of reduction in cooling
costs using two novel technologies: renewable open air cooling
(OAC) and thermal energy storage (TES).

Both OAC and TES are emerging technologies that are gaining
traction within data centers. Open air cooling (OAC), also known
as “free cooling”, uses outside air to cool servers whenever the cli-
mate permits, e.g, when the outside air is cool or dry. OAC can
decrease, or even eliminate, the use of chillers used to chill the air
for cooling the servers. Service providers who employ large data
centers such as Facebook and Google have begun to use OAC, in
part by building new data centers in carefully chosen (cold) loca-
tions where the climate permits the outside air to be used to cool
the data center for the majority of the year. Thermal energy stor-
age (TES) provides a mechanism for storing energy in the form of
chilled water or ice that can be used for cooling the servers at a
later time. Using TES, one can exploit electricity price fluctuations
by storing thermal energy when prices are cheap and using stored
thermal energy to cool servers when prices peak. While TES is
a mature technology used in building and factory applications for
decades, their use in data centers has been fairly recent [8].

Our focus is on understanding the efficacy of using OAC and
TES for IDNs. To our knowledge, neither technology has been
studied in an IDN context that is distinctive for the following rea-
sons. IDNs such as CDNs have two defining characteristics: a
global deployment of servers in multiple data centers around the
world, and a replication of services across these data centers. The
global deployment is often driven by the need for an IDN to have
servers “proximal” to the end-users. For instance, Akamai’s CDN
is deployed in hundreds of data centers in over 100 countries around
the world, with users accessing content from servers in “proximal”
data centers [23]. A corollary of this deployment model is that it



is not possible for IDNs to deploy only in places where weather
is cold most of the year, or where electricity is cheap. They need
to deployed near where the users are. However, IDNs often repli-
cate their services across their data centers, so that the workload
of serving users can be easily shifted from one data center to an-
other, albeit with a potential for performance degradation. These
two characteristics provide an IDN the flexibility to move its work-
load across data centers to exploit climatic variations to optimize
the use of OAC, a flexibility that services employing a single or a
few data centers do not possess. The energy cost also varies across
locations and across time. TES allows for “shifting” the cooling
energy requirement in time, by drawing from the grid when energy
is cheap during off-peak hours and using it during peak hours. Our
algorithms orchestrate both the movement of load (i.e, load bal-
ancing) and grid energy (i.e., power management) to decrease an
IDN’s cooling costs.

Contributions: Our work is the first scientific evaluation of the
potential of OAC and TES in the context of an IDN. Our specific
contributions follow.

• Algorithm Design: We design algorithms to integrate both
OAC and TES, individually and in combination, with an IDN’s
network-wide load balancing and cluster-wide power management
systems. Of particular algorithmic interest is the TES power man-
agement described in Section 5.2 that uses the Lyapunov technique
to decide when to use TES versus the chillers to minimize overall
cost. Our algorithm is online in that it has no knowledge of the
future workload or energy prices, but is provably within an addi-
tive factor of the minimum cost achievable by an offline algorithm
that has full knowledge of both. Our TES algorithm is generic and
can be used for a broad range of storage devices, including TES and
batteries. While prior Lyapunov-based online algorithms [9, 19, 11,
28] are known, they assume that the efficiency of the storage device
is 100%. To our knowledge, our work is the first to explicitly incor-
porate the notion of efficiency within the Lyapunov framework that
is key to modeling storage devices. All real-world devices have
various types of conversion losses that could range from 10-50%
depending on the type of device. Our approach also better utilizes
the available storage, resulting in a provably closer approximation
of the optimal than prior work in [9, 19, 28, 11]. Further, our work
also provides an evaluation of the cost achieved by the online Lya-
punov approach vis-à-vis the offline optimal baseline for a range of
workload, conversion loss, and energy prices.

• Extensive Trace-based Evaluation: We evaluate both OAC and
TES using extensive load traces from the world’s largest CDN. The
traces were collected from Akamai’s CDN every five minutes for
the period of a month from over 115,000 servers deployed in over
973 data centers in 102 countries. Using these CDN traces, weather
data from over 650 locations around the world, and energy price
information we evaluate the ability of OAC and TES to reduce op-
erational and capital expenditures via reductions in energy usage
and costs.

• Benefits of OAC: We study the potential for deploying OAC
at scale in a IDN. We design greedy “weather-aware” load balanc-
ing algorithms that direct load to the closest data center where the
current weather permits “free” cooling using outside air. Our result
shows that even during summer, a global IDN can extract more than
51% reduction in the energy spent for cooling using OAC. During
winter when OAC is more plentiful, a 92% reduction in system-
wide energy can be had. Further, these savings can be achieved
without degrading the performance experienced by users. How-
ever, important exceptions remain. We find that Singapore has
small or no potential for OAC throughout the year using current
technology, while Japan is not conducive to OAC during the sum-

mer months. However, with newer (class A4) data center technol-
ogy, even such places can use OAC, with energy savings for Japan
rising from 0% to 83% in August.

• Benefits of TES: We study the potential for deploying TES-
based cooling within an IDN to flatten peaks in cooling power re-
quirements and reducing energy costs by exploiting electricity price
differentials. We show that TES with a small storage capacity that
can power a data center for 30 minutes is sufficient to reduce the
global installed chiller capacity of the IDN by 41%, resulting in
a capital expenditure (CAPEX) saving. For individual major met-
ros in the world, the chiller capacity reduction for 30 minutes of
TES capacity varied from 25-45%. Exploiting electricity price dif-
ferentials require a larger TES capacity of about 10 hours and can
result in nearly 18-43% energy cost reduction for major US metros,
resulting in operating expenditure (OPEX) savings.

• Benefits of OAC and TES together: We study how to combine
OAC and TES at the scale of a global IDN to extract even more
CAPEX and OPEX savings. Combining OAC and TES produces
greater cost savings than TES alone. With OAC and a 30-minute
TES capacity, we can reduce the global installed chiller capacity of
the IDN by 47%. In places such as San Jose, California where OAC
is plentiful, combining OAC and TES can practically eliminate the
need for chillers. The energy cost savings can also be significant.

Roadmap: We present background and methodology in Sec-
tions 2 and 3. We present our algorithms and results for OAC, TES
and their combination in Sections 4, 5 and 6. We present related
work in Section 7 and conclude in Section 8.

2. BACKGROUND
Internet-scale Distributed Networks: An IDN is a large dis-

tributed network of servers where the servers are deployed in data
centers throughout the world. A canonical example is a content
delivery network (CDN) that we discuss as an illustrative example.
Content providers—such as media sites and e-commerce sites—use
CDNs to host and deliver their content. When a user accesses con-
tent hosted by the CDN, the CDN’s load balancing system assigns
the user to a server in a “nearby” data center, so as to minimize
server-client latency and loss [23]. For this reason, major CDNs
deploy their servers widely in hundreds of data centers around the
world. A corollary of this deployment model that CDNs share with
other highly-replicated Internet-scale services is that users have
a redundant choice of data centers that each provide acceptable
performance—an architectural feature we exploit extensively in this
paper.

A typical IDN deploys cluster of servers in data centers that it
owns or in rented co-location (colo) facilities. While an IDN has
complete control over what (cooling) technologies are deployed in
its own data centers, it typically has little control over cooling tech-
nologies used in colo facilities. However, there is an increasing
trend towards containerized clusters, i.e. modular self-contained
containers, that permit design flexibility in how the container is
built and cooled, even in colo facilities. Given these future trends,
we assume that an IDN (or, its proxy) has the ability to deploy or
exploit advanced cooling technologies in its data centers, regardless
of type.

A recent study of data center energy consumption [24] showed
that servers and cooling consumed 56% and 30% of the total en-
ergy respectively, while power conditioning (8%), networks (5%)
and lighting (1%) accounted for the rest. Thus, most of the energy
consumed by a data center is spent in powering servers or cooling
them; we refer to these components as server energy and cooling
energy, respectively. Since cooling energy is a significant portion
of the total energy consumption, we examine the potential for em-



ploying two new cooling technologies to reduce either the energy
usage or the energy cost incurred by an IDN, or both.

Renewable Cooling using Open Air: A promising approach
for reducing the cooling energy of a data center is to use the out-
side air, instead of HVAC chillers, to cool servers within the data
center. OAC has the potential to reduce or even fully eliminate the
need for chillers that consume much of the electrical energy used
for cooling.1 OAC has recently been successfully installed in a few
facilities such as Facebook’s data center in Forest City, North Car-
olina [26]. However, OAC is feasible only when the air is “cold"
and “dry" enough. As a result, OAC may not be possible every-
where. Further, even where OAC is possible, it may not be possible
during all times of the day, or all seasons of the year.

In our work, we use (i) the instantaneous weather outside each of
the IDN’s data center locations, and (ii) the recommendations of the
American Society of Heating, Refrigeration, and Air-conditioning
Engineers (ASHRAE) [10] to determine whether the outside air
can be used to cool the data center at any point in time. Table 1
specifies ASHRAE’s temperature and humidity ranges for four dif-
ferent classes of data centers, where each class represents the type
of server and other IT equipment used in the data center. The lowest
class A1 represents the most basic equipment that allows the small-
est operating ranges of temperature and humidity and as such repre-
sent the widest deployment of data centers today. The highest class
of A4 represents the most advanced equipment that can function at
a much large operating ranges of temperature and humidity. Given
the wide deployment of IDNs, we conservatively assume that our
data centers belong to class A1, but also consider what-if scenar-
ios if data centers of higher classes become commonly prevalent.
Note that assuming class A1 places a lower bound on the potential
savings from OAC.

Class Dry-Bulb Humidity Max Dew
Temp (� C) Range Point (� C)

A1 15 to 32 20% to 80% 17
A2 10 to 35 20% to 80% 21
A3 5 to 40 8% to 85% 24
A4 5 to 45 8% to 90% 24

Table 1: ASHRAE’s allowable ranges for dry bulb temperature,
relative humidity and the maximum dew point of the air that make
it suitable for cooling different classes of data centers [10]. Higher
data center classes correspond to newer technology allowing for
broader ranges of tolerance.

Although ASHRAE standards do not specify the cooling tech-
nology to be used by a data center, the specified ranges enable us
to determine the upper limits on outside air temperature, humidity
and dew point that permits OAC to safely cool a data center of a
particular class. To determine whether a data center can employ
OAC at any point in time, we use the weather data for that location
to determine the dry-bulb temperature, relative humidity, and dew
point. Following the methodology presented in the GreenGrid con-
sortium whitepaper [10], if the outside air is below the ASHRAE
range, it can be rectified by mixing the outside air with the return
air that is warmer. Thus, it suffices to compare the measured dry-
bulb temperature, relative humidity, and dew point of the outside air
with the upper limits of the allowable ranges in Table 1 to ascertain
OAC feasibility.
1Different forms of OAC include evaporative cooling, which uses a
combination of water and outside air, and direct air cooling, which
directly uses outside air, to cool servers. Our analysis is agnostic to
the exact form of OAC employed by the data center.

Thermal Energy Storage: TES is a mechanism for storing ther-
mal energy by either heating or cooling a medium so that it can
be used later. TES systems create and store chilled water or ice
that can subsequently be used to cool air (e.g. by blowing warm
air through chilled water). TES can be used in conjunction with
HVAC chillers, or perhaps even in lieu of them. The two common
use cases of TES that we examine are (i) under-provisioning the
chillers and using TES to bridge the gap when the cooling demand
exceeds the capacity of the under-powered chiller, and (ii) exploit-
ing energy price differentials by charging the TES when prices are
low and using the stored energy for cooling when the prices are
higher. The former provide capital cost (CAPEX) savings, while
the latter reduces operational costs (OPEX).

TES systems are varied in their technology and design. We
model key TES parameters as follows. At any given time, we as-
sume that the TES is in one of two states. It is either in a recharge
state where more chilled water or ice is produced and stored in its
tank. Or, it is in a discharge state where the chilled water or ice is
released and used for cooling. The maximum discharge rate of a
TES represents the maximum amount of cooling (in KWs) it can
dispense. Typically, TES is designed in a manner that it can pro-
vide the peak cooling demand of the data center. The charge rate
is typically comparable to the discharge rate. The capacity of the
TES is the amount of energy (in KWHs) it can store and relates to
the size of the tank used to store the chilled water or ice. While
the capacity can be expressed in KWHs, a more intuitive unit is the
numbers of hours (or, minutes) a TES can be used to cool the data
center at peak, i.e., TES capacity in hours is simply its capacity in
KWHs divided by the max discharge rate. Finally, like any energy
storage, TES systems incur energy losses in storage, charge and
discharge cycles. TES efficiency varies from 50% to 90% [12] for
water-based systems. Other types of TES that use Phase Change
Materials (PCM) or chemical reactions to store the energy may
have even higher efficiencies in the 75% to 100% range [12]. We
assume TES efficiency to be 90%, but also show how lower TES
efficiencies impact our results.

Energy Consumption Model for an IDN: The primary con-
sumers of energy in an IDN are the widely deployed servers. The
energy consumed (and dissipated as heat) by a server can be mod-
eled as a function of its (normalized) load l , 0  l  1, where
l is the load served by the server as a fraction of its capacity.
However, deployed servers are not energy proportional and still
use roughly 60% of the peak energy when idle. Hence, we use
the standard linear model of server power consumption [2] where
the power (in Watts) consumed by a server serving load l equals
Pidle +(Ppeak �Pidle)l , where Pidle is the power consumed by an
idle server, and Ppeak is the power consumed by the server under
peak load. While the servers themselves are not energy propor-
tional, one can consolidate the server load and turn-off idle servers
to save energy [16]. We assume that such an optimization is per-
formed in each of the IDN’s data centers in calculating the energy
dissipated by the clusters.

Clearly, the more the energy dissipated by the servers, the more
the energy required by the cooling system to cool them. Thus, cool-
ing energy is roughly proportional to the amount of heat dissipated
in the data center, which in turn is governed largely by server en-
ergy. The proportionality factor is a measure of the effectiveness of
the cooling system deployed at the data center and is captured by
its power usage effectiveness (PUE) that is ratio of the total energy
consumed by the facility to the energy consumed by the servers and
other IT equipment. While specialized data centers with low PUE
are known, recent studies have shown that the average PUE of a
data center is 1.8 [27]. Thus, cooling energy still accounts for a



large fraction (say, 30 to 40%) of the total energy consumed by the
IDN. Our work focuses on reducing the cooling component of the
IDN’s energy consumption.

Energy Pricing Models: To incentivize consumers to reduce
their energy use during peak hours, it is common place for utilities
to have time-of-use (TOU) pricing that are lower during hours of
low demand. Examples include Wisconsin electric [31] that we
use for our experiments as being typical of TOU contracts. It is
worth noting that our results are not sensitive to the precise dollar
values of the electric costs, but rather only relative values of how
much cheaper off-peak prices are to on-peak ones. Another form of
time-dependent variable pricing that is gaining prevalence is market
pricing [25] in which power can be bought on the “real-time” spot
market at each data center location of the IDN. We study TES in
both pricing models.

Energy Efficiency Metrics: We consider two aspects of effi-
ciency in the context of cooling IDNs: energy usage and energy
cost. Reducing the energy usage reduces carbon emissions, and
also reduces energy cost, but not necessarily vice versa. For in-
stance, OAC reduces both energy usage and energy cost. How-
ever, TES may increase energy usage slightly due to conversion
and storage losses, but reduces energy cost. We consider two as-
pects of energy cost: (i) capital expenditure (CAPEX) of cooling
equipment to be installed at a data center, and (ii) operational ex-
penditure (OPEX) of running the cooling system. Both OAC and
TES have the potential to reduce CAPEX and OPEX of an IDN.

3. EXPERIMENTAL METHODOLOGY
To derive the potential for using OAC and TES in an IDN, we

performed trace-driven simulations using a combination of IDN
workloads and weather data. We used extensive load data from
across Akamai’s CDN for the period of one month. The trace in-
cludes load information from 115,246 servers deployed in 973 data
centers locations in 102 countries around the world (see Table 2).
Collectively, the traces account for 43.9 trillion requests served by
the CDN that resulted in content served to users around the world
with a peak traffic of 24.8 million requests/second. The dataset in-
cludes the load, requests served, and bytes served by each server
every five minutes over the month-long trace. Further, the trace has
detailed information about every data center including the number
of deployed servers, total server capacity, and the location of the
data center including its latitude, longitude, city, state, and country.

Our experimental evaluation also employs global weather traces
provided by the National Oceanic and Atmospheric Administration
(NOAA) for the year 2012. The dataset contains year-long weather
data from 13,497 weather stations across the globe that record a
large number of metrics including the hourly dry-bulb temperature
and dew point. Since the exact location of each weather station and
data center are known, we can compute the weather station that is
closest to each CDN data center and use its weather data to repre-
sent the ambient weather conditions at that data center. Given the
extensive network of NOAA weather stations, we were able to find
a nearby weather station within 10km for the majority of data cen-
ters, including all of the “large” data centers near major population
centers. We found a weather station within 40km for most of the
remaining locations. The matching process yielded 651 weather
stations that were mapped onto the 973 data centers (major cities
have multiple data centers mapped to the same “nearby” weather
station). The weather data was used to determine if the outside air
at each data center was suitable for cooling at that time.

To compute the cooling energy required by the CDN, we first
compute the server energy consumed (and dissipated) for each data
center of the CDN for each 5-minute window using the load and

Figure 1: Normalized cooling energy required by Akamai’s CDN
in the US, UK, Japan and Australia. Notice the diurnal variation as
cooling energy is proportional to the load induced by users access-
ing content from those locations.

Figure 2: NYISO real-time prices.

server information in the traces and the server and cluster energy
model presented in Section 2. Cooling energy is proportional to
the server energy, where the proportionality factor is related to
the PUE. Figure 1 shows the cooling energy required by Akamai’s
CDN as computed from the traces for four major countries.

We make two simplifying assumptions in our analysis. We had
load data every five minutes but weather data once an hour. We
assumed that the weather parameters do not significantly change
during the hour. Further, we had weather data for a whole year but
comprehensive CDN load data only for a month. We assumed that
the measured monthly CDN load pattern repeats through the year.

To evaluate the reduction in energy costs due to OAC and TES,
we used Wisconsin electric’s TOU pricing [31] as being typical
of TOU contracts. We obtained the real-time spot market prices
available for several major US metros from public web sites (cf.
Table 4), e.g, Figure 2 shows the real-time electricity price in the
New York metro.

4. OPEN AIR COOLING
To integrate OAC into an IDN’s architecture, its global load bal-

ancer must be made “weather-aware”. The load balancer of an IDN
assigns each user request to a “nearby” data center to optimize
user-perceived performance. To evaluate the benefit of OAC, we
propose a simple greedy algorithm that modifies the load assign-
ments made by the (non-weather-aware) load balancer as reflected
in our Akamai load traces by moving user load from data centers
that have no OAC to nearby data centers that do, subject to per-
formance constraints. Our greedy algorithm does the following for
each of the IDN’s data centers at each time step: if the weather
conditions at a data center location permits OAC, then user load
mapped to that location is unchanged; however, if the weather con-
ditions at a data center location do not permit OAC, the load bal-
ancer attempts to greedily re-assign the load destined for that loca-
tion to other nearby data centers with spare server capacity where



Duration 1 month
Data centers 973 data centers, 102 countries

No. of servers 115,246
Total requests 43.9 trillion

Peak traffic 24.8 million requests/second

Table 2: Load data from Akamai CDN

Duration 12 months
Weather stations 13,497
Mapped stations 651

Resolution 1 hour

Table 3: NOAA weather data.

Dataset Pricing type
Wisconsin Energy Time of use (TOU)

New York ISO, ERCOT
Texas, Midcontinent ISO Real time, spot

California ISO

Table 4: Electricity pricing data.

OAC may be available. The premise is that weather patterns ex-
hibit sufficient regional variations so that OAC may be possible at a
location even when it is not be feasible at another nearby location.
We exploit these geographic variations by searching for alternate
“nearby” locations where OAC is still feasible.

The primary performance impact to the user from the remap-
ping is that a user may get mapped to a data center that is “farther”
away, increasing response times. We can limit how far a user can
be remapped by stipulating that our algorithm can only remap load
to data centers within a radius r kms of the data center to where
it was originally mapped. Specifically, the greedy algorithm reas-
signs the load of each data center without OAC to alternate data
centers with OAC that have spare capacity to accommodate all or
part of the load and are within radius r. The alternate data centers
are examined in the increasing order of distance and any load left
unassigned by this process is not remapped and must be cooled in
its original data center using traditional HVAC chillers. The radius
r represents a tradeoff between network performance and energy
savings. The greater the r, the greater the user-perceived response
times, but greater are the chances that there will be sufficient geo-
graphic weather variations such that OAC is possible at these alter-
nate locations. In general, significant savings are possible with no
performance degradation at all (i.e., for r = 0). Even for moderate
values of r (e.g., r  1000km), we expect the vast majority of the
load to be served locally, while moving the residual load only by a
small distance, limiting the performance degradation (cf. Fig. 5).

Our evaluation uses geographic distance as a proxy for latency
and response times. This is because our load traces only include
client locations and mask client IP addresses for privacy, allowing
us to compute geographic distance but not network distance. Prior
work has shown that network latency increases with increasing ge-
ographic distance, and so distance is a coarse measure of latency
(cf. Table 1 of [23], or, Figure 4 of [13] that posits a marginal in-
crease of 1 msec of network latency for every 50km of distance, or
[25] that uses distance as a proxy for latency in a similar context).

4.1 Empirical Results
We evaluate the potential for OAC using our greedy algorithm

outlined above on our IDN load and weather traces for a full year.
In our simulations, we assume that each data center belongs to the
most conservative ASHRAE A1 class.

4.1.1 Reduction in chiller capacity
We examine whether OAC can yield CAPEX savings for an IDN.

Intuitively, if OAC reduces the worst-case peak demand on HVAC
chillers, either by absorbing a portion of the peak demand locally
using OAC or by redirecting a portion of the peak load to other
nearby data centers that can be open air cooled, then the IDN can
deploy lower capacity (and less expensive) chillers to cool the re-
duced peak load. However, it is not evident a priori whether OAC
can reduce the worst-case peak demand on chillers, e.g. the worst-
case peak load could occur on hot summer days where OAC is in-
feasible. Figure 3 depicts the average capital cost (CAPEX) sav-
ings across all global IDN locations due to a reduction in chiller

Figure 3: Savings in capital costs of chillers with OAC.

capacity. The figure shows that for A1 class data centers, OAC
yields only a 7.5% savings when r = 0km, implying that peak load
does coincide with hot or humid days when OAC cannot be used.
Further, allowing the load to be redirected to locations within a
1000km radius yields 25% CAPEX savings. The CAPEX savings
are significantly higher for the newer A4 class data centers with a
mean reduction of 68.6% in cooling capex with r = 0km to as much
as 89.5% capex reduction when r = 1000km.

4.1.2 Reduction in energy usage

Global Savings: The energy savings can be computed by com-
paring the energy used with OAC to the energy used to cool the
original load entirely with chillers without OAC. Figure 4(a) de-
picts the average percentage energy savings obtained across the en-
tire CDN for different months of the year and for different values
of distance r. The savings from OAC is generally higher during
the cooler winter, early spring and late fall months of the northern
hemisphere, with lower savings during the warmer summer months
(May to September). Note that our analysis includes savings from
data centers in both the northern and southern hemispheres. How-
ever Internet traffic from North America, Europe and Asia dom-
inate the global Internet traffic, hence the seasonal benefits from
the northern hemisphere dominate the global trends. Overall, our
result shows that even during summer, a global IDN can extract
significant cooling energy reduction of more than 51% even during
summer with no performance impact (r = 0) and the savings due
to OAC increase to over 92% during winter months; the savings
increase as the performance constraints are relaxed by permitting
r = 1000km yielding an additional 13% savings during the warmest
month of July. For r = 5000km which allows for trans-continental
load redirection, the savings increase to over 92% throughout the
year, including summers.

Regional and Seasonal Variations in Savings: Figure 4(b) and
(c) depict the energy savings seen in two major countries, USA



(a) Global (b) USA (c) Australia

Figure 4: Energy savings for the entire global IDN and for major countries in each of the two hemispheres.

and Australia, in the northern and southern hemispheres, respec-
tively. Energy savings in USA broadly follow the global trends,
indicating that USA not only contributes a significant portion of
the global traffic, but also has its seasons aligned with the domi-
nant northern hemisphere. Further, USA being a large country in
terms of geographic area, exhibits significant regional variations.
Fig 4(b) shows high energy savings of over 96% in winter months,
it indicates that most cities, regardless of location, see uniformly
high energy savings. In the summer, however, there are consider-
able differences: southern cities such as LA see low OAC savings
(for r = 0), while northern cities such as Seattle see higher than
average OAC savings. Australia (in Fig 4(c)) sees similar differ-
ences between summer and winter, with OAC savings of 64% in
the summer month of January for r = 0 and nearly 100% savings
in the winter months of May to September. Further, allowing the
load re-direction to a data center within a 1000km radius increases
the summer savings to above 85.6%.

Impact of Newer Data Center Technologies: Thus far, we as-
sumed that all IDN data centers belong to the most conservative A1
class in terms of server and cooling equipment. However commod-
ity servers built in recent years are engineered to withstand higher
temperatures without impacting reliability. Further, the latest cool-
ing equipment can deal with a larger range of humidity scenarios.
Consequently, we repeat the previous analysis by assuming all data
centers are built for ASHRAE’s most aggressive A4 class, which
permits the inside temperatures in the data center to be maintained
as high as 45�C with relative humidity of 90 (cf. Table 1). Our
experiment sheds light on the additional benefits from having A4
class data center, since OAC now becomes feasible even in warmer
or more humid climates. With A4 class, we observe 95% energy
savings from OAC year-round for r = 0km, with a slight decrease
in the summer. With r = 1000km, the savings rise to about 98%
even in the summer.

Network latency impact: Figure 5 shows the impact on perfor-
mance (i.e., latency increase) due to OAC-driven load movements
is likely to be small even when we allow our algorithm to move
load to data centers that are up to 1000km away. This is because
over 90% of the load is served locally due to OAC on an average
day; even on the worst day of the year, over 68% of the load is not
moved at all. On an average, 92.6% (resp. 97.5%) of the user load
gets served by a data center within 300km for r = 1000km (resp.
r = 500km). Even on the worst day of the year that requires the
most load movement, 75.5% (resp., 88.7%) of the load is served
by a data center within 300km for r = 1000km (resp., r = 500km).
These results indicate that only a few users see a modest increase
in latency due to OAC while most see no impact.

Figure 5: Average distance the load is moved by our algorithm for
the whole year and on the worst day for r = 500 and 1000.

5. THERMAL ENERGY STORAGE
We explore two different benefits of TES. First, TES can reduce

the need for chillers. With TES, a chiller with smaller capacity
might suffice. Downsizing the chillers, or in some cases eliminating
it, will result in a CAPEX savings that we quantify. Further, TES
can also be used to reduce the OPEX by reducing the cost of energy
needed to cool the IDN. In each of the IDN’s data centers, TES can
be used to produce chilled water (or ice) when electricity prices are
lower and used for cooling the servers when prices are higher.

5.1 Reduction in chiller capacity
Chillers are provisioned at a data center by first computing the

energy that needs to be provided for cooling the data center over a
long period (say, a year) and sizing the chiller to provide the peak
cooling energy required over that period2. Typically, provisioning
is done in an offline fashion using historical or predicted values
for the cooling energy. Our methodology follows this approach
closely. We compute the cooling energy required for each IDN’s
data centers over a year and take the peak requirement at each loca-
tion as the chiller capacity (in KWs) required at that location. We
then incorporate TES at each data center and recompute the chiller
capacity required at each location. Figure 6 shows an example of
downsizing the peak cooling power required using TES.

5.1.1 Computing the chiller capacity reduction:
To compute the smallest capacity chillers needed at each data

2In practice, one would inflate this peak requirement by a safety
factor to over-provision the chiller. However, our results are inde-
pendent of such a factor since we only use relative capacity values
to compute savings.



center with TES, we minimize the chiller capacity required (chiller_cap)
subject to the constraints below:

The total cooling power required is provided by either the chiller
or the TES at each time step t.

chiller_power(t)+ tes_discharge(t) = cooling_power(t),8t (1)

The amount of power drawn from chiller at any time step is non-
negative and cannot exceed its provisioned capacity.

0  chiller_power(t) chiller_cap,8t. (2)

The TES discharge (resp., charge) variable is positive while dis-
charging (resp., charging) and zero when charging (resp., discharg-
ing). The charge and discharge rates cannot exceed their respective
maximum values.

0  tes_discharge(t) max_discharge,8t. (3)
0  tes_charge(t) max_charge,8t. (4)

Energy stored in the TES increases (resp., decreases) when it is
charged (resp., discharged). Some energy is lost in the process as
captured by the TES’s efficiency.

energy_stored(t)+ tes_efficiency · tes_charge(t)
�tes_discharge(t) = energy_stored(t+1),8t. (5)

Energy stored cannot exceed the TES capacity.

0  energy_stored(t) tes_cap,8t. (6)

Given cooling requirements, cooling_power(t), 1  t  T and
TES parameters, we compute the smallest chiller capacity required
at each data center using the algorithm below.
Step 1. Fix a value for chiller_cap and check if a chiller of that ca-
pacity would suffice in providing the cooling requirements for the
data center as follows. Compute the required sequence of TES dis-
charges by observing that when cooling_power(t)> chiller_cap the
TES should discharge to provide cooling_power(t)� chiller_cap.
To check if this sequence of discharges is feasible, we use a greedy
TES charging algorithm that charges the maximum allowable amount
at each time step where cooling_power(t)< chiller_cap, subject to
constraints 3, 4, 5, and 6. It is clear that the discharge sequence
is feasible iff the greedy charging algorithm can provide those dis-
charges without violating the constraints.
Step 2. Using binary search, fix values for chiller_cap and test for
feasibility as above, till the smallest value is found.
Step 3. The chiller capacity reduction is simply
100⇥ (1� (chiller_cap with TES)/(chiller_cap without TES)).

5.1.2 Empirical Results:
We analyze the reduction in chiller capacity as a function of TES

capacity across the IDN on a global basis, in addition focusing on
five major metro areas around the world (cf. Figure 7 (a)). Note
that a small TES capacity of 30 minutes gives a substantial sav-
ing in chiller capacity of 25-45%, because even a small amount of
TES is able absorb and flatten the peaks in the cooling energy re-
quirement. Without TES, those peaks would have to be provided
by the chillers. Observe that with about 3.5 hours of TES capacity,
one can reduce the chiller capacity by at least 50% globally and in
all the five locations. Further, the law of diminishing returns hold
where more TES capacity yields progressively smaller reductions
in chiller capacity. Finally, while TES reduces chiller capacity it
does not eliminate chillers all together.

Thus far, we assumed that the TES efficiency was 90%. To gauge
the impact of efficiency on our results, we varied the TES efficiency
from 50% to 90%, reflecting the many different TES technologies

Figure 6: The peak cooling power required in Akamai’s data cen-
ter in New York can be reduced to 77% of its original value with
10 mins of TES capacity. TES discharges when cooling power re-
quired is above the 77% threshold value and charges when it is
below the threshold, flattening of the power peaks.

(a) City comparison (b) Efficiency comparison

Figure 7: Impact of TES on chiller reduction

that are available today [12]. Figure 7(b) shows that the chiller
reduction CAPEX decreases only a small amount as efficiency be-
comes smaller, since even at 50% efficiency the TES has sufficient
time between the discharge intervals to recharge to nearly full ca-
pacity.

5.2 Reduction in energy cost
In addition to chiller capacity reduction (CAPEX saving), we

evaluate the ability of TES to provide a reduction in the energy
procurement cost (OPEX saving). The savings is due to shifting
the electric power drawn from the grid from time periods when
energy is expensive to when energy is cheap.

5.2.1 A near-optimal online algorithm for TES
A TES power management algorithm meets the cooling power

requirements of each data center at each time step by either using
the chillers or the TES. The algorithm decides when and how much
to charge or discharge the TES, accounting for the workload and
time-varying energy prices. Using the Lyapunov technique, we de-
rive an online power management algorithm that achieves a cost
that is provably within an additive constant of the optimal offline
algorithm. An online algorithm makes decisions without knowing
the future workload and energy prices, while an offline algorithm
has full knowledge of both. Thus, the cost achieved by an offline
optimal algorithm is a lower bound on what any online algorithm
can achieve.

Our TES algorithm is generic and can be used for a broad range
of energy storage devices, including TES and batteries. While prior
Lyapunov-based online algorithms [9, 19, 11, 28] are known, they
assume that the efficiency of the storage device is 100%. To our
knowledge, our work is the first to explicitly incorporate the notion



of efficiency within the Lyapunov framework that is key to mod-
eling storage devices. All real-world devices have various types
of conversion losses that could range from 10-50% depending on
the type of device. Our approach also better utilizes the available
storage, resulting in a provably closer approximation of the optimal
than prior work in [9, 19, 28, 11].

Given the time-varying price of electricity, energy cost is simply
the sum over all time of the product of the energy price and the
power drawn from the grid, i.e.,

energy_cost =
T

Â
t=1

grid_power(t) · energy_price(t). (7)

We minimize the energy cost subject to the following constraints.
The cooling energy is provided using power drawn from the grid
and the power drawn from TES. Thus,

grid_power(t) + tes_discharge(t)� tes_charge(t)
= cooling_power(t),8t. (8)

Note above that when TES is charged, the grid provides the energy
for both charging the TES and for cooling the data center via the
chillers. However, when the TES is discharged, the grid provides
only the difference between the cooling power requirement and the
TES discharge amount. Finally, we enforce the condition that the
power drawn from the grid should lie between 0 and max_grid, the
maximum power that can be drawn from the grid, i.e.,

max_grid � grid_power(t)� 0,8t. (9)

The energy cost optimization problem is simply minimizing the
objective function in Equation 7 subject to the constraints that cap-
ture TES properties in Equations 5, 6, 3, and 4 and the constraints
in Equations 8 and 9 that capture the manner in which power is
drawn from the grid.

To design an online algorithm for the above optimization, we use
an optimal control technique called Lyapunov optimization [22].
The resulting online algorithm works in real-time knowing only the
inputs up and until the current time t, without knowledge of inputs
greater than t. Specifically, it is a myopic algorithm whose control
decisions in any slot t depend only on the system state in that slot.

To describe our online algorithm, we assume that the control
horizon T is divided into intervals of size S and there are I such
intervals, i.e., T = S · I. Let max_pricei and min_pricei denote the
maximum and minimum unit energy price in interval i. For each
interval i, the Lyapunov-based algorithm makes use of a control
parameter Vi which is defined as

Vi =
tes_cap�max_charge�max_discharge

gi �min_pricei
(10)

where gi
M
=max_pricei/tes_efficiency. The algorithm uses the queue-

ing variable X(t) in making its control decisions:

X(t) = energy_stored(t)�Vti · gti �max_discharge. (11)

where ti denotes the interval containing slot t. The X(t) variable is
simply a shifted version of the TES energy level energy_stored(t).
Given X(t) and current price energy_price(t), the algorithm makes
charge/discharge decisions by minimizing the following objective
function every slot subject to the constraints 3, 4, and 8.

tes_charge(t)
�
tes_efficiency ·X(t)+Vti · energy_price(t)

�

� tes_discharge(t)
�
X(t)+Vti · energy_price(t)

�
(12)

The optimal solution for above has the simple structure below:

1. If X(t) � �Vti · energy_price(t), then tes_charge(t) = 0 and
the optimal discharge value is given by tes_discharge(t) =
min[max_discharge,cooling_power(t)]. Essentially, we dis-
charge from TES as much as possible while drawing from
the grid for remainder of the cooling power required.

2. If X(t)�Vti ·energy_price(t)/tes_efficiency, then we have
tes_discharge(t) = 0 and the optimal charge value is given by
tes_charge(t)=min[max_charge,max_grid�cooling_power(t)].
In this case, we charge the TES as much as possible in ad-
dition to drawing from the grid for all of the cooling power
required.

3. If �Vti · energy_price(t)/tes_efficiency < X(t)<
�Vti ·energy_price(t), then we do not charge or discharge and
the cooling power is drawn from the grid.

The above structure follows by comparing the terms multiplying
tes_charge(t) and tes_discharge(t) in (12) and choosing the strat-
egy that minimizes the objective. It can be seen that this algorithm
jointly makes use of the current energy level (reflected by X(t))
and the current price as well as the tes_efficiency is making its de-
cisions and has a threshold structure. Our control algorithm differs
from prior work derived in the context of batteries in [28] with the
following key differences: (i) We explicitly consider storage effi-
ciency, and (ii) unlike [28] that uses a fixed V for all t, we vary this
control parameter dynamically. As shown in the theorem below,
this results in a superior performance guarantee.

THEOREM 1. Suppose that our online algorithm described above
is implemented over T slots containing I intervals each of size S and
suppose in each interval i, it uses control parameter Vi as defined
in (10). Then, the following hold:

1. The queue X(t) is deterministically upper and lower bounded
for all t as follows:

�Vi · gi �max_discharge  X(t) tes_cap�Vi · gi

�max_discharge (13)

2. The TES energy level energy_stored(t) satisfies for all t:

0  energy_stored(t) tes_cap (14)

3. Suppose the processes energy_price(t) and cooling_power(t)
are i.i.d. over slots. Then the expected per slot cost under
the online algorithm is within B̂/Vhm(I) of the optimal offline
value.

1
T

T

Â
t=1

E{grid_power_online(t) · energy_price(t)}

B̂
Vhm(I)

+
1
T

T

Â
t=1

E{grid_power_offline(t) · energy_price(t)}

(15)

where B̂ is a constant (independent of V ) defined as

B̂ =
(max_discharge)2 +(max_charge)2 + (tes_cap)2

S
2

(16)

and Vhm(I) is the harmonic mean of Vi, i.e., Vhm(I) = I
ÂI�1

i=0
1
Vi

.

PROOF. See Appendix A.



Figure 8: Lyapunov versus offline optimal for
NY and Houston (TOU pricing).

Figure 9: Impact of different TES efficiencies
(New York with TOU pricing).

Figure 10: Comparing different Lyapunov al-
gorithms with offline optimal.

The performance bound (15) should be contrasted with that of
[28] which uses a fixed V for all t. Indeed, the fixed V case cor-
responds to using a single interval. In this case, the V used by the
algorithm will be mini Vi. Since Vhm(I)� mini Vi, the performance
bound provided by our algorithm is superior. Also, note that while
the theorem above assumes i.i.d inputs, that assumption can be re-
laxed to include markovian inputs using the framework in [22] to
get similar bounds.

5.2.2 Empirical comparison with the offline optimal
In this section, we use real-world workload and pricing traces

to evaluate the performance of our Lyapunov algorithm. We also
compare it to the offline optimal solution that is obtained by solving
a linear program as discussed before.

Theorem 1 guarantees that the Lyapunov algorithm is within an
additive factor of the optimal offline and that this factor decreases
as TES capacity is increased. To validate this, we calculated the
cost savings under the Lyapunov algorithm for increasing values
of TES capacity for two cities (New York and Houston) with the
TOU pricing model. We also computed the offline optimal value
using the LP formulation. Figure 8 shows that the gap between the
offline optimal and Lyapunov becomes small as TES capacity is
increased. In both cases, the gap is less than 3.4% for TES capacity
of 10 hours or more.

So far, we assumed that the TES efficiency was 90%. Next we
compare the impact of lower TES efficiencies on the cost savings
under Lyapunov and offline optimal as shown in Figure 9. As TES
efficiency increases from 50% to 100% for a 10 hour capacity TES,
the gap between them reduces from 11% to 2%. This is because
lower efficiency makes the Vhm(I) smaller, thereby increasing the
additive factor.

Finally, we compare the cost savings under Lyapunov and of-
fline optimal for the real-time market pricing model. Unlike TOU
pricing, it exhibits a large variation and degree of variation itself
can change over the course of the control horizon. In Figure 10,
we compare the performance of two variants of our Lyapunov al-
gorithm: the more standard approach of using a fixed V and our
newer approach of using a variable V . The interval size for the
variable V algorithm was chosen to be 1 hour. As predicted by the
bound (15), our variable-V algorithm significantly outperforms the
fixed-V algorithm. Intuitively, this is because a dynamic V allows
more efficient use of the available TES capacity. Note that the gap
between offline optimal and Lyapunov remains non-negligible sug-
gesting that for market pricing, there is room for improvement.

5.2.3 Empirical Results
We study the energy costs that can be saved using TES by us-

(a) TOU Pricing (b) Real-time Market Pricing

Figure 11: Annual energy cost savings for 4 major US cities.

ing both the TOU pricing model and real-time market pricing from
four major metros in the US. Our choice of metros for market pric-
ing were restricted to the US since we were unable to get real-
time market prices for other locales. For each metro, we used
our Lyapunov algorithm to simulate charge/discharge TES deci-
sions to minimize the total energy cost for the entire year. The
energy cost reduction is computed in comparison with using no
TES at all. Specifically, energy cost reduction equals 100⇥ (1�
(cost with TES)/(cost without TES)).

The energy cost reductions from TES arise from drawing energy
from the grid when prices are lower and discharging when prices
are higher. Figure 11 shows energy cost reduction as a function
of TES capacity for TOU and market pricing. Unsurprisingly, as
capacity increases so does the energy cost saving. Though returns
diminish with increasing capacity as there are fewer energy price
differentials that TES can exploit.

Now, compare the use of TES for chiller capacity reduction (Fig-
ure 7 (a)) versus its use for energy cost reduction (Figure 11). To
achieve a 25-45% chiller capacity reduction a TES capacity of just
30 minutes was sufficient. While several hours of capacity is re-
quired for comparable energy cost savings. That is because chiller
capacity reduction is obtained by flattening the peaks in cooling
power, which requires only the small amount of energy in the “nar-
row” peaks to be stored. Whereas energy cost saving involves stor-
ing large amounts of energy drawn from the grid during low-price
periods for use during high-price periods, requiring a larger capac-
ity.

6. COMBINING OAC AND TES
We evaluate using both OAC and TES and study its impact on

both CAPEX and OPEX. Our strategy is to first use as much OAC



Figure 12: OAC and TES provide more chiller
capacity reduction than just TES.

Figure 13: Energy cost savings for four major
US metros with TOU pricing.

Figure 14: Energy cost savings for four major
US metros with market pricing.

as possible, potentially by moving load across data centers of the
IDN using the algorithms presented in Section 4. Next, we use TES
within each data center using the algorithms presented in Section 5.
The impact of OAC is to reduce the cooling energy supplied from
the TES and chillers. TES further adds to the benefit by “flatten-
ing” the peaks of the cooling energy resulting in a chiller capacity
reduction. Also, the TES can “move” the energy drawn from the
grid from more expensive hours to cheaper hours. For our evalua-
tion, we use OAC with no performance impact (r = 0km), as even
that provided favorable results in combination with TES.

6.1 Reduction in chiller capacity
To determine the smallest chiller capacity required at each data

center of the IDN we first use OAC whenever possible and then
use the chiller reduction algorithm for TES as described in Sec-
tion 5.1.1. Figure 12 shows the chiller capacity reduction as a
function of TES capacity for the global IDN and five major metros
around the world. In comparison with using TES only (cf. Fig-
ure 7(a)), the addition of OAC results in higher reductions, espe-
cially in San Jose and London where the chillers can be reduced by
more than 50% with just 1 hour of TES capacity. Further, chillers
can be practically eliminated in San Jose with OAC and TES ca-
pacity of about 5 hours providing all the required cooling energy.
The other three cities each have periods of the year where OAC is
unavailable resulting in less significant additional reductions due to
OAC.

6.2 Reduction in energy cost
We study the reduction in energy cost that comes both from a

decrease in the required cooling power from the grid due to OAC
and shifting of the grid energy usage from more expensive periods
to cheaper periods using TES. In Figures 13 and 14, we fix the
TES capacity to 10 hours and show the energy cost reduction in
the four major US metros through the whole year for TOU and
market pricing respectively. San Jose has at least 84% savings all
year round. The other metros show great seasonal variations with
summer months having much less savings due to unavailability of
OAC. OAC gives a bulk of the savings. But, in July and August
when OAC is scarcer, TES provides more additional value.

7. RELATED WORK
Data centers and IDNs consume a significant amount of energy

and techniques to reduce the energy consumption have been stud-
ied extensively. Much of this effort has focused on reducing the
power consumption of server clusters through advanced cluster-
wide power management techniques [3, 16]. In the IDN context

in particular, techniques such as server- and cluster shutdown have
been proposed to make server clusters more energy proportional to
IDN traffic [21]. Moving load across data centers of an IDN to
exploit variation in energy market prices [25] and for increasing
the use of renewables [18] has been studied. However, we explore
load movement for evaluating the potential for OAC using exten-
sive IDN load and global weather traces. Separately, the use of
renewable energy to power and cool data center servers [17] and
techniques to minimize server carbon footprint [6] have also been
studied. In the context of reducing the cooling energy, thermal en-
gineering techniques have been studied to optimize temperature
and air flow through server racks or perform temperature-aware
scheduling of workloads on “cool” racks [4]. However, the use of
new cooling technologies in data centers has only recently begun
to gain attention [1, 17]. In the context of OAC, recent ground-
breaking work has focused either on the systems aspect of incorpo-
rating OAC into a modular data center [5] or on provisioning [20]
and temperature management [7] within a single data center. Com-
panies such as Facebook have begun to employ open air cooling
in their data centers in recent years [26, 30]. Similarly, while TES
has long been used in building and industrial applications, its use
in data centers has only gained recent recognition [29].

To the best of our knowledge, prior scientific studies have not
examined the potential benefits of exploiting OAC and TES at a
global scale by a distributed network deployed across a large num-
ber of data centers, that is the focus of our work.

8. CONCLUSIONS
In this paper we studied the potential benefits of using OAC and

TES to reduce the energy usage as well as the operational and
capital costs incurred by an IDN.We presented algorithms to in-
corporate both technologies into the IDN architecture and empiri-
cally evaluated their efficacy using extensive traces from Akamai’s
global CDN and global weather data from NOAA. We showed that,
by using OAC, a global IDN can extract a 51% cooling energy re-
duction during summers and a 92% reduction in the winter. Further,
a IDN can reduce its global chiller capacity by 41% with as little as
30 minutes of TES and reduce its energy costs by 18-43% with 10
hours of TES in major metros. Combining OAC and TES enables a
IDN to reduce its global chiller capacity by 47% or even eliminate
them entirely in places such as San Jose, California. Overall, we
show that OAC and TES hold great promise for the future sustain-
able IDN design.
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APPENDIX
A. PROOF OF THEOREM

Here, we prove Theorem 1. For notational convenience, we
make use of the following shortened variables:

cooling_power(t) =C(t),energy_price(t) = P(t)

grid_power(t) = G(t),energy_stored(t) = Y (t)

tes_charge(t) = R(t), tes_discharge(t) = D(t)

max_charge = Rmax,max_discharge = Dmax

tes_efficiency = a
PROOF. (Theorem 1 part 1) We omit the subscript i for nota-

tional convenience. We first show that (13) holds for t = 0. Using
the definition of X(t) from (11), we have that Y (0) = tes_cap =
X(0)+V g +Dmax. It follows that X(0) = tes_cap�V g �Dmax �
�V g �Dmax. Also, X(0) = tes_cap�V g �Dmax  tes_cap�V g �
Dmax. Thus, (13) holds for t = 0.

Now suppose (13) holds for slot t. We will show that it also holds
for slot t + 1. First, suppose X(t) � �V · min_price � �V P(t).
Then, by case 1 of the optimal solution to (12), we have that R(t) =
0 and X(t +1) cannot increase. Next, if X(t)<�V ·min_price, the
most it can increase is Rmax. Thus X(t + 1)  �V ·min_price+
Rmax  tes_cap�V g �Dmax (using the definition of Vmax. This
shows the bound on the right hand side of (13).

Next, suppose X(t)  �V g  �V P(t)/tes_efficiency. Then, by
case 2 of the optimal solution to (12), we have that D(t) = 0 and
X(t + 1) cannot decrease. Next, if X(t) > �V g , the most it can
decrease is Dmax. Thus, X(t + 1) � �V g �Dmax. This shows the
bound on the left hand side of (13).

PROOF. (Theorem 1 part 2) Substituting the definition of X(t)
from (11) in (13), we have

�V g �Dmax  Y (t)�V g �Dmax  tes_cap�V g �Dmax

Thus, we have that 0  Y (t) tes_cap.

PROOF. (Theorem 1 part 3) We make use of the technique of
Lyapunov optimization to show (15). We start by defining the fol-
lowing Lyapunov function: L(X(t)) = 1

2 X2(t). Define the condi-
tional 1-slot Lyapunov drift as follows:

D(X(t)) = E{L(X(t +1))�L(X(t))|X(t)}

Using (11), D(X(t)) can be bounded as follows:

D(X(t)) B�X(t)E{D(t)�aR(t)|X(t)} (17)

where B = (R2
max +D2

max)/2. Following the Lyapunov optimiza-
tion framework, we add to both sides of (17) the penalty term

VtiE{G(t)P(t)|X(t)} to get the following:

D(X(t))+VtiE{G(t)P(t)|X(t)} B

�X(t)E{D(t)�aR(t)|X(t)}+VtiE{G(t)P(t)|X(t)}

Using the relation C(t) = G(t)�R(t) +D(t), we can rewrite the
above as:

D(X(t))+VtiE{G(t)P(t)|X(t)} B+VtiE{C(t)P(t)|X(t)}
�X(t)E{D(t)�aR(t)|X(t)}�VtiE{D(t)P(t)|X(t)}
+Vti ⇥E{R(t)P(t)|X(t)}=

B+VtiE{C(t)P(t)|X(t)}�E{D(t)(X(t)+Vti P(t))|X(t)}
+E{R(t)(aX(t)+Vti P(t))|X(t)} (18)

Observing the last two terms, it can be seen that the online algo-
rithm (12) minimizes the right hand side of (18) over all possible
feasible control policies. This includes the offline solution to the
problem. Indicating these by G0(t), we have

D(X(t))+VtiE{G(t)P(t)|X(t)} B+VtiE
�

G0(t)P(t)|X(t)
 

Taking the expectation of both sides, summing over all slots in in-
terval i, and dividing both sides by Vi, we get

iS�1

Â
t=(i�1)S

E{G(t)P(t)} BS
Vi

+
iS�1

Â
t=(i�1)S

E
�

G0(t)P(t)
 

� E{L(X(iS))}
Vi

+
E{L(X((i�1)S))}

Vi

Now summing over all intervals i 2 {0,1, . . . I �1}, we get

T�1

Â
t=0

E{G(t)P(t)}
T�1

Â
t=0

E
�

G0(t)P(t)
 
+

I�1

Â
i=0

BS
Vi

+
I�1

Â
i=0

E{L(X((i�1)S))}
Vi

Dividing both sides by T = SI and using the fact that L(X((i �
1)S)) (tes_cap)2

2 for all i, we have

1
T

T�1

Â
t=0

E{G(t)P(t)} 1
T

T�1

Â
t=0

E
�

G0(t)P(t)
 
+

B
I

I�1

Â
i=0

1
Vi

+
(tes_cap)2

2SI

I�1

Â
i=0

1
Vi

Note that 1
I ÂI�1

i=0
1
Vi

is the inverse of the harmonic mean of Vi for
i 2 {0,1, . . . , I �1}. This shows (15).


